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Given two time serieX andY, their mutual information|(X,Y)=1(Y,X), is the average number of bits of
X that can be predicted by measurifgand vice versa. In the analysis of observational data, calculation of
mutual information occurs in three contexts: identification of nonlinear correlation, determination of an optimal
sampling interval, particularly when embedding data, and in the investigation of causal relationships with
directed mutual information. In this contribution a minimum description length argument is used to determine
the optimal number of elements to use when characterizing the distributiofiamd Y. However, even when
using partitions of th&X andY axis indicated by minimum description length, mutual information calculations
performed with a uniform partition of th¥Y plane can give misleading results. This motivated the construc-
tion of an algorithm for calculating mutual information that uses an adaptive partition. This algorithm also
incorporates an explicit test of the statistical independencé afidY in a calculation that returns an assess-
ment of the corresponding null hypothesis. The previously published Fraser-Swinney algorithm for calculating
mutual information includes a sophisticated procedure for local adaptive control of the partitioning process.
When the Fraser and Swinney algorithm and the algorithm constructed here are compared, they give very
similar numerical resultfless than 4% difference in a typical applicatioBetailed comparisons are possible
when X andY are correlated jointly Gaussian distributed because an analytic expressibiXf¥) can be
derived for that case. Based on these tests, three conclusions can be drawn. First, the algorithm constructed
here has an advantage over the Fraser-Swinney algorithm in providing an explicit calculation of the probability
of the null hypothesis thaX andY are independent. Second, the Fraser-Swinney algorithm is marginally the
more accurate of the two algorithms when large data sets are used. With smaller data sets, however, the
Fraser-Swinney algorithm reports structures that disappear when more data are available. Third, the algorithm
constructed here requires about 0.5% of the computation time required by the Fraser-Swinney algorithm.
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[. INTRODUCTION of these contexts will now be briefly described.
Mutual information can be used to identify and quantita-
Given two time Series{x}:{XLXZv---XND} and {Y} tively characterize relationships petween data sets that are
={y1,Ys,...yn.}, their mutual informationl(X,Y), is the av-  Not detected by commonly used linear measures of correla-
D tion. Figure 1 recapitulates an example shown in Mars and
Lopes da Silvd2] and displays three data set pairs. The first
'showsx; whenx;=-3 to +3 in steps of 0.0006 plotted against
g;, a random normally distributed variable with zero mean
and unit variance. The second element of Fig. 1 shqws
x;+0.2¢; whereg; is the prewously used random variable. In
the th|rd example of Fig. ly;=x 2+0.2;. Four measures

L p hal ing i | icularly wh were calculated with 10 000 element data sétsthe Pear-
mination of an optimal sampling interval, particularly when o jinear correlation coefficiemt, (ii) the Spearman rank

embedding time series data, afit) in the investigation of 4er correlations, (iii ) Kendall's tau, a nonparametric mea-

causal relationships with directed mutual information. EachSure of correlation, andv) the mutual information between
{X} and {Y} using an algorithm that will be described in a

subsequent section. The corresponding probabilRigs of
* Author to whom correspondence should be addressed. Electronitie null hypothesis of zero linear correlation for each of the
address: aalbano@brynmawr.edu four measures were also calculated.

erage number of bits diX} that can be predicted by measur-
ing {Y}. It can be shown that this relationship is symmetrical
[(X,Y)=1(Y,X). A systematic presentation of the definition
of mutual information and its mathematical properties is
given in Cover and Thomddl]. In the analysis of observa-
tional data, calculation of mutual information occurs in three
contexts(i) identification of nonlinear correlatioij) deter-
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mate sense of the time scale corresponding to significant
changes in a time series’ behavior. However, as we have seen
in the preceding calculations, linear measures can give an
incomplete characterization of behavior. This recognition has
motivated the calculation of lagged mutual information.

Let {X} be the original time series, and let time sefi¥$
be the same time series shifted by a time lag, thatyis,
=Xi+lag The mutual information(X;, Xi,15g) is then calculated
as a function of lag. In order to get the most new information
from a measurement, we want to take the next measurement
when there is maximum uncertainty in the relationship be-
tween{X} and{Y}. The maximum uncertainty in the relation-
ship between{X} and {Y} will occur at a minimum of
[(Xi, Xi+1ag). Fraser and Swinnej4] argue that among the
many different minima of (X;, Xj1a¢), the sampling interval
should correspond to the first minimum k;, Xi;jag)-

A specific application of (X;, Xi;j5¢) calculations can oc-

FIG. 1. Data sets used in the correlation study of Table I. In eacfUr when embedding dynamical data. In the simplest case, an
casex varies from -3 to +3 in steps of 0.0006) y;=¢;, a nor-  analysis based on embedded data begins with a scalar time
mally distributed random variable with zero mean and unit vari-Series{X}. The elements ofX} are then used to form an
ance.(B) y;=x+0.2s;. (C) y;=x2+0.2s;. m-dimensional se{Z} e R™ with the construction

The results are shown in Table I. In the case of normally Z; = (X, Xjslag Xj+2lags -+ Xj+ (m-Dlag) -
distributed random numbers, all four measures behave in a
manner that is consistent with our qualitative understandinghe analysis continues with the investigation of the geo-
of the word correlation. Similarly, in the case of calculationsmetrical properties ofZ}. A crucial operational difficulty is
with linearly correlated noise the results are consistent wittencountered when embedding finite observational data sets.
expectations. Embedding parametera and lag must be chosen. Inappro-

The results obtained in the case of parabolic correlatioriate choices ofn and lag can result in the spurious indica-
merit closer inspection. The first three measures;, andr  tion of structure in random daf&]. Conversely an inappro-
are small and the correspondify,, values are high which priate specification can, in other cases, result in the
indicates that no correlation was detected. In contrast, thennecessary failure to identify structures that are indeed
value of mutual information is high, essentially equal to thatpresent in the time series. Several candidate criteria for se-
obtained using linearly correlated data, and the probability ofectingm and lag have been proposed. An incomplete review
the null hypothesis of statistical independence is zero. ~ of the very large embedding criterion literature is given in

In the second context, mutual information estimates cariellucci,et al.[5]. Fraser and Swinnefy] proposed that the
be also used to determine an appropriate sampling interv&lest value of lag to use in an embedding is given by the first
Ts, Which is the time between consecutive measurements dhinimum of thel (X;, Xi.ja¢) Vs lag function. This proposal is
a time series. Many of the calculations presented here will bsupported by Abarbang6]. To a limited degree the Fraser-
calculations directed to this question. The selection of arBwinney proposal was confirmed in a recent comparative
appropriate sampling interval is an important consideratiorstudy of embedding criterigb].
when the quantitative methods of dynamical analysis are ap- A third circumstance in which calculation of mutual in-
plied to time series data. On first consideration, one mighformation is important is in the characterization of causal
suppose that the smallest possifilewould be the best op- relationships between two time series. By definition, a corre-
tion. While this may be a reasonable approach during datkation measure, either linear or nonlinear, quantifies the de-
acquisition, this strategy can fail during analysis because cagree of correlation betweefX} and{Y} under their respec-
culations with oversampled data can produce misleading retive definitions, but correlation does not necessarily identify
sults[3]. Historically, calculation of the autocorrelation time, causal relationships in the sense of identifying which vari-
the time required for the autocorrelation function to drop toable drives the other, if indeed such a relationship exists.
1/e of its initial value, has been used to establish an approxiHistorically the most commonly employed measure of cau-

TABLE |. Correlation analysis.

Pearsorr PearsorP,,, Spearmamg SpearmarP,, Kendall'stau Kendall'sP,, 1(X,Y) 1(X,Y)Pnu

Normally distributed random —0.0037 0.7112 —0.0040 0.6854 0.0027 0.6845 0.1356  0.7851
Linearly correlated 0.9934 0 0.9936 0 0.9270 0 2.9186 0
Parabolically correlated 0.0001 0.9912 <10* 0.9928 <10 0.9989 3.0304 0
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sality in economics research is Granger causéfitg] which 45
is based on the construction of bivariate autoregressive pro 4
cesses. A complementary procedure for the investigation o@s.s
causal relationships can be constructed by examining de”
layed mutual information functions. Stated informally, if a
measurement of variabbe can predict the future of more
effectively than measurement pfcan predictx, then, in that
limited sense, in an isolated system variablean be said to
drive variabley. Xu et al.[9] describel (X;,Y;,,) as the rate
of information transmission from variableto variabley at a 0
delay of 7. Several investigators have used this technique to ¢ L s z
assess the time dependence of between channel informatic % ﬂgg 190 200
transfer in multichannel EEG9-13). Significant limitations

of causality measures based on lagged mutual information FIG. 2. 1(X;,Xi.1a) @s a function of lag. Ten thousand consecu-
have been identified by Schreibgt4]. He argues, in our tive values of the Lorenz variable were used. In the case of the top
view correctly, that “time delayed mutual information fails to curve,Ngements50. The value oNgjementsdecrease in steps of 10 to
distinguish between information that is exchanged fromthe lower curve wher®lgiements 10.

shared information due to common history and inputs.” He

addresses these limitations with the construction of a transfefame for both variable$\y =Ny =Ngements €qually sized el-
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entropy. ements partition each axis. In these calculations, a well char-
acterized minimum ol (X;, Xi,5y) appears at lag=18 when
IIl. CALCULATING  1(X,Y) WITH A UNIFORM PARTITION Netements=50. However, as the diagram indicates, this mini-
OF THE XY PLANE mum is lost if other values oNgemens@re used. Since the

location of the first minimum of the(X;, Xi,ag) Vs lag is

Let {X}={x1,Xz,Xz...xn.} and {Y}={y1,y2,ys...yn,} be  frequently the object of a mutual information calculation,
time series of equal length. Suppose that the distributions dhis result argues against the common practice of selecting
XandY, Py(i) andPy(j) are approximated by histograms of Ny andNy arbitrarily.
Ny and Ny elements that uniformly divide the range  The preceding example indicates that the value of mutual
Xmin—Xmax aNd Ymir—Ymax 1t iS Not necessary foNy to be information can be sensitive to the number of elements used
equal toNy. Let Oyy(i,j) denote the occupancy of the when a uniform partition of theXY plane is implemented.
(i,j)th element of the partition of thXY plane that extends We must therefore address the question what is the optimal
from Xpin t0 Xmax ON theX axis (Ny equal elemenjsand from  number of elements? This is a restatement of the histogram
Yo 10 Vi ON the Y axis (Ny equal elemenis Pyy(i,j) is  Problem in the specific context of mutual information calcu-
determined by normalizing the occupancy against the numlations. The histogram problem is: given a scalar dataXset
ber of paired observationByy (i,j)=Oxy(i,j)/Np. The joint ~ ={X1, Xz, ...Xa}, how many elements should be used to con-
probability distribution,Pyy (i, }), hasNxNy values, many of ~Struct a histogram ok? If there are too many elements, each
which may be zero. A discrete approximation I¢X,Y) is  €lement has an occupancy of 0 or 1 and fails to identify the

computed using the following relatidi]: distribution of X in a meaningful way. Similarly, if there are
only a small number of elementsonsider the limiting case
& . Pxv (i) of a single element the structure of the distribution cannot
1(X,Y) = 2 > Pyy(i,j)log, PoiPy()) | (1) be discerned. A successful answer therefore lies at an inter-
i=1 j=1

mediate value. The histogram problem has a long history and

where there is no contribution to the sunPify (i ,j) is equal has been examined by several investigafa£s-17.

to zero. Tukey [17] suggested that'’?, wheren is the number of
While easy to implement, this procedure for estimatingoPservations, is the best choice. Bendat and Pi¢isglrec-

mutual information contains a serious deficiency. The calcudmmended 1.8A-1)%% A systematic theoretical develop-

lation will be sensitive to the choice ®y andNy. An ex- ~ment of the question is given by Rissanki8]. Rissanen

ample is shown in Fig. 2(X;, X;1ag) is plotted as a function US€S a minimum description length argument to conclude

histogram is the value ofn, my,, that gives a minimum
dxdt=o(x-y), value of the stochastic complexitiy(m),
dy/dt=—-xz+rx -y, R n n+m-1
F(m)=n Iogz(—> + Iogz< ) + Iogz< )
mA ny,...,N
dz/dt=xy~- bz, L n

whereo=10, b=8/3, andr=28. Ten thousand values of the n is the number of data points in st R is the range of
X variable of the Lorenz system were used in calculations, R=Xy,.x—Xmin- M is the number of elements in a uniform
where the number of bins in the distribution histogram is thepartition. A is the resolution of the measurement>pfand
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FIG. 3. Mutual informationl (X;, Xi;ag) @s a function of lag for
Rossler data. A uniform partition of th€Y plane was constructed

using 40 elements on each axis. 100 000 data points were used. The gy 4. Three-dimensional construction of the Réssler attractor

top curve was obtained with variable The curve immediately sing 10 000 poink, y, andz vectors generated using the differen-
below it was constructed with variabjedata. The lower curve was g equation and parameter values specified in the text.
calculated with variable data.

coincident, the function obtained witlraxis data is very
n;, N, ...N, are the occupancies of each element in the pardifferent.

tition. The multinomial coefficient is The cause of the differences in thesariable mutual in-
formation function in Fig. 3 can be identified by examining a
< n >: n! three-dimensional construction of the trajectory using all
Ny, ...,Nm/  Nilny!.oong! three variablegFig. 4). The activity of the Rossler system is

confined predominantly to the=0 plane. At irregular, cha-
otic intervals there is an abrupt excursion into #1¥0 do-
<n+ m- 1) (n+m-1)! main. An examination of the histograms formed wihy,

and the binomial coefficient is

-y (m-1! and z data(Fig. 5 shows that while thex andy values are
' ' approximately uniformly distributed, most of the activity of

The value ofA only shifts the function by an additive con- thez variable is confined t0,0.379 even though the maxi-
stant. It will not affect the value ah If the only object of mum value ofz is approximately 15.
the calculation is to determin®@,,, A can be set equal to 1. The value of optimal lag produced by the mutual infor-
Base two logarithms are used throughout the development imation functions of Fig. 3 are lag=13, 16, and 48 fouy,
Rissanen, but again if the sole object is a determination odndz, respectively. Should we expect the values of optimal
My, the choice of base is immaterial. embedding lag to be the same for all three variables? While

F(M) was calculated using the Lorenz data used to conit can be argued that there is @oprori reason to suppose
struct Fig. 2 A minimum was obtained #,,=32. Using that they should be equal, there is a specific context in which
this value for the number of elements in the uniform partitiona disparity of optimal lag values is problematic. Thus far we
of the X and Y axes in a calculation off(X;, Xi,55) gives a have considered embeddings based on a scalar variable
mutual information versus lag function with a well charac- where Zj=(X;, X+jag, - - Xj+(m-1lag)- HOWever, in applications
terized first minimum at lag=21. This analysis would seemwith experimental data where multichannel recordings are
therefore to provide a rational procedure for calculatingobtained, a multichannel embedding can be utilize®,20.
[(X,Y). Application to the ROssler equations, however, raisesn the specific case where variabbesy, andz are recorded,
additional questions. The Rossler equations used in the neXi becomesZ; = (Xy+(-1)iag: Y1+(-1)lag: Z1+m-1lag)- IN applica-

n

calculations were tions of this type, a common value of lag is required. The
dxdt=-y-z question then becomes, which value should be used?

’ A resolution of this difficulty, at least for the Rossler data

dy/dt=x+0.2y, used here, can be found by re-examining the mutual infor-

mation versus lag calculations displayed in Fig. 3. A calcu-
_ lation of F(M) using data obtained from variablegave a
d7dt=0.4 +xz=5.72. value ofM,=40. This value was used to specify the number
Using x-axis data generated by this system, a calculation obf elements in a uniform partition calculation of mutual in-
the Rissane®(M) gives a minimum aiM =40. A 40-element  formation. The same number of elements was used in calcu-
partition of each axis was used in the subsequent calculatiorigtions withy andz data. This is inappropriate. Whét{(M)
of mutual information as a function of lag foe, y-, and is calculated with data from the other variables, a value of
z-variable data. The resulting mutual information versus lagV =54 is obtained witty data, and a value d¥l,,=852 is
functions are shown in Fig. 3. It is seen that whitaxis and  obtained withz data. The higtz value of M, can be under-
y-axis data give functions with first minima that are roughly stood by examining the histogram in Fig. ®ote that the
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FIG. 5. Histograms constructed with Rdssler
data. The histograms were formed with the
10000 points used to construct the three-
dimensional attractor of Fig. X data were used
to construct the top histograny. data were used
to construct the middle histogram, and the bottom
histogram displayZ data. Note that the ranges of
the vertical axes are different.
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range of the vertical axes of theandz histograms differ by  partition each axis in the calculation wittdata, the resulting

a factor of 20) The distribution of thex andy variables mutual information function is qualitatively similar to func-

between their respective maximum and minimum values igions obtained withx andy data. The optimal lags, the first

approximately uniform. As previously observed, most activ-minimum of the mutual information versus lag function, for

ity of the z variable is confined tf0, 0.379 even though the x, y, andz are 13, 16, and 17, respectively.

maximum value ofz is approximately 15. Because the The sensitivity of mutual information estimates to compu-

distribution is so strongly nonuniform, a much higher num-tational parameters identifies a compelling need for the sys-

ber of partition elements are needed to recover the fine stru¢ematic statistical validation of these calculations. This re-

ture of that variable’s distribution. quirement motivated the construction of the algorithm
Mutual information versus lag calculations were againdescribed in Sec. lll and IV.

performed with a uniform partition algorithm. In contrast

with the calculations shown in Fig. 3, the results displayed in

Fig. 6 were obtained in calculations in which the number of Ill. STATISTICAL ASSESSMENT OF 1(X,Y)

elements in each partition were determined by a minimum CALCULATIONS

description length argument, the minimum fefM), that is The results with Rossler data suggest that the calculation
specific to each variable. When 852 elements are used {g mytyal information using a uniform partition can produce
misleading conclusions. An alternative to uniform partition-
ing should therefore be sought. An additional and arguably
more important issue should also be addressed. The calcula-
tions of mutual information should be constructed on a sound
statistical foundation. When computingX, Y) we should in-
corporate a statistical test of the confidence of our rejection
of the null hypothesis thaX andY are statistically indepen-
dent.1(X,Y)=0 if X andY are statistically independent. In
practice, we wish to know if a computed nonzero value of
I(X,Y) is statistically significant. Therefore, given time series
. X andY, our object is to assess the null hypothesis ¥and
50 100 150 200 Y are statistically independent.

Lag The null hypothesis of statistical independence can be ad-
. . . dressed in the following manner. Suppose that the distribu-
FIG. 6. Mutual information(X;, X;.1g) s a function of 1ag for 0"\ ariables andYgare approximg?ed by histograms of

the Rossler data. In the case of variakldata, a uniform partition L _ L

) . Ny andNy elements. In most applicatioi =Ny, but this is
of the XY plane was constructed using 40 elements on each axis. t ired O (1) is the ob d fi b fth
For the variabley data, 54 elements were used on each axis, and foPO requiredOx (i) is the observed occupation number of the

the variablez data 852 elements were used on each axis. 100 0of bin of the variableX histogram.Oy (j) is assigned analo-
data points were used in each calculation. Identifying at lag=35, th€ously. Oxy(i,]) is the observed occupation number of ele-
top curve corresponds to variabje the second curve corresponds menti,j of the XY partition. Exy(i,]) is the expected occu-
to variablex, and the lowest curve to variabte pancy of elementi,j of the XY partition given the

4 .

Mutual Information (bits)
= N [
[+, N o & o0

-

ot
n
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assumption thakK andY are statistically independent the sense that the widths of each element are adjusted indi-
i i vidually in order to meet the requirement of uniform occu-
Eyxy(i,]) = NpPx()Py(j) = ND{OX_(')HOY_(J)} pancy. LetPy (i) denote the probability ak’s membership in
Np Np theith element of thex axis partition. We have
_ Ox(MOv()) Py (i) = 1/Ng.

No Similarly, after determining/mi, and ymae they axis is par-
whereNp is the number ok,y pairs. titioned intoNg elements so that there is an equal number of
Following conventional statistical practif21,27, we re-  occupants in eack axis element,
quire Exy(i,j)=1 for all elements of the partition and

Eyxy(i,j)=5 for at least 80% of these elementshe Py(i) = 1/Ne.
“Cochran criterion). The value ofy? is Under the null hypothesis of statistical independence, the
Ny Ny o R expected occupancy of the, j)th element of the partition of
2.3 S {Oxy (i,]) = Exy(i,})} the XY plane is
X = Eoolii .
i=1 j=1 A, No

The conditionEyy(i,j)=1 for all values ofi,j ensures that Bxy (1,1) = NoPx (1)Py(}) = N_é
X’ is well behaved. In addition tg?, v, the number of de-

grees of freedom, is also computed Ng is determined by finding the largest possible value that

givesExy(i,j) =5 for all elements of theXY partition. This
v=(Nx —1)(Ny—-1). criterion is therefore more conservative than the Cochran
[21] criterion that require€yy to be greater than five in at

Using x” and v, the probability of the statistical indepen least 80% of the elementl is the greatest integer such that

dence null hypothesis is computed,

1/2
. (v X Ng < (&) .
Pnui = probability of the null hypothesis © 279 5
. . . Pxv(i,]j) is calculated using this partition. Mutual informa-
Qs the incomplete gamma function, tion is calculated with Eq(1). x*> and P, are calculated as
1 (Y ot 1 (" previously described. INy is exactly divisible byNg, then
Qxy) =1 Tl € tdt= Fx)f et dt I'(x the formula for mutual information simplifies and becomes
° g Ng Ng
_ f It 10X, Y) = 20 2 Py (1, 1) IN{NEPycy (1)}
0 i=1 j=1

However, wherNp is not a multiple ofNg, elements of the
axis andy axis partitions do not have exactly identical prob-
abilities equal to 1Ng, and the preceding formula should be
used. If the Cochran expectation criterion is satistatd by
construction it will b¢ and the null hypothesis is not re-
As previously outlined, we propose that calculation ofjected, then, to the extent that can be determined by calcula-
mutual information should be statistically validated by appli-tions with this algorithm, the two data sets are statistically
cation of ay? test of the null hypothesis of statistical inde- independent. Under these conditions, reporting a nonzero
pendence. Additionally, the partition of th€Y plane, which  value of mutual information cannot be justified. Therefore, in
is used to calculate the joint probability distributid?yy,,  cases where the null hypothesis is not rejected, the algorithm
should satisfy the Cochran criterion on the expectarigjgs returnsl(X,Y)=0 rather than the numerical value produced
In the following algorithm, we use the expectation criterion by the formula. This practice incorporates a conservative un-
to construct a nonunifornXY partition. This procedure has derstanding of statistical significance. As an alternative, the
two advantages over the use of a naive uniform partitionnumerical value of mutual information obtained from the
First, it reduces sensitivity to outlying values ¥fandY. algorithm and its uncertainty can be reported.
Second, it provides an approximation of the highest partition The application of this procedure to the Rossler data is
resolution consistent with the expectation criterion. shown in Fig. 7. In contrast with the results of Fig. 3, which
Let Np denote the number of, Y pairs.Ny is the number  were obtained with a uniform partition, it is seen that the first
of elements used in the partition of theaxis. Ny is the  minimum of the mutual information versus lag functions ob-
number of elements used to partition thgieaxis. For this tained withx-, y-, andz-variable data approximately coincide
implementation of the algorithmi\y and Ny are equal and when the adaptive partition is used. The probability of the
denoted by the number of elemems. Ng is determined by  null hypothesis was calculated for each value of lag. With
the following procedure: after determinixg,,, andxyax the  these dataP,,, was found to be numerically indistinguish-
x axis is partitioned intdNg elements so that there is an equal able from zero for each value of lag. Since the dataYset
occupancy in each element. This partition is nonuniform inused in these calculations ofX,Y) is a lagged version of

IV. CALCULATION OF 1(X,Y) USING AN ADAPTIVE XY
PARTITION
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=, FIG. 8. lllustrative example of the adaptive partition employed

by the Fraser-Swinney algorithm. In this hypothetical example, the
05 50 100 150 200 substructure of elemeni;(2) andR;(3) is approximately uniform

Lag and these elements are therefore not partitioned. Eleniiits,

) ) . ) B R;(4), and Ry(4,2) are partitioned into subelements because they
FIG. 7. Mutual information as a function of lag using ROssler neet the criterion for the presence of smaller scale structure.
data. Mutual information was calculated using an adaptive partition

algorithm. The data used in Fig. 3 were used in these calculations.

Nga= 100 000. Viewed at lag=18, the curves from they, andz A finer partit.ion is used in areas of theY plape where
variables have the top-down orderofz-y. Pxy has nonuniform structure. For the hypothetical example

in the diagramPyy is deemed to be approximately uniform
on Ry(2) and Ry(3). The partitioning terminates with these
elements. In contrasR;(1) and R;(4) have locally nonuni-

form joint distributions and are partitioned. In this example,

data selX, this rejection of the null hypothesis is anticipated.
Suppose that time seriesis transformed by a monotone

increasing functioy wherehy may be nonlinear. Similarly I ) . )
suppose that time series Y is transformed by a monotonBartitioning terminates at th&, level with the exception of

increasing functiorhy. The adaptive partition algorithm for element-R2(4,2), \,N.h'Ch has a honuniform joint distribution

calculating mutual information is then applied to calculate®d 1S partitioned into ~ four G,  elements,

I(hy(X), hy(Y)). These transforms are monotonic. ThereforeRe(4,2,1-Rs(4,2,4. The partitioning continues until the

while the values are changed, the relative ordering of elel0c@! joint distributionPyy is approximately uniform.

ments in the time series are invariant. When the algorithm is ' the case wher@yy is exactly uniform onRy(Kpy),

applied, the location of the boundaries of axis partitions will Fraser and Swinnej4] show that dividing the partition ele-

be shifted but the occupancies of each element will be unmMent into four subdivisions will have no effect on the con-

changed, that isPx (i), Py(j), and Pyy(i,j) are unchanged. trlbut!on to mutual |r)fprrr_1at|on obtained from_that element.

Therefore the value of mutual information is unchanged. €rminating the partitioning process at levgj, is therefore

This is summarized in the following result. justified in this case. As a_prgctlcal matter, however, it is
Theorem Let X andY be time series of equal length. Let necessary to 9?“3‘*?"5“ a criterion that can be u_sgd to termi-

hy and hy be monotone increasing functions. If mutual in- nate the partitioning process for some sp.ecmc element

formation is calculated using the adaptive partition algo-Rm(Km) WhenPxy is nearly, but not exactly, uniform on that

rithm. then element. In their paper, Fraser and Swinney construct a test

’ for uniformity that uses g? test to examine structure on
1(X,Y) = 1(hg(X),hy(Y)). both them+1 andm+2 generation partition oR,(K,,). Let

N=N(Ry(K,,)) denote the number oXY pairs in element

R (K. Using analogous notation for the subdivisions, let

3 =N(Ry+1(Kim,1)) and let bj;=N(Ry.2(Kp,i,j)). By the
Fraser and Swinney,23| have constructed an alternative Fraser and Swinney criterio®yy will be deemed to be ef-

adaptive partition algorithm for calculating mutual informa- fectively uniform onR.,(K;,) and the partitioning process

tion. As in the case of the previous algorithm, the calculatiorwill be terminated on that element if bottﬁ< 1.547 and

is directed to an estimate of the discrete form of the mutuak3,;< 1.287, where

information integral given in Eq.1). Numerical approxima- .

tion of the joint probability distributiorPyy constitutes the o, ) 16[1 5

most demanding element of the computation. The Fraser- X3~ E(N)Z (@ - N4,

Swinney algorithm[4] does this by constructing a locally =t

adaptive partition of theXY plane(see Fig. 8.

V. FRASER-SWINNEY ALGORITHM

As a preliminary exercise leading to the construction of » ) 256(1 LS )
the algorithm, consider a sequence of partitions X157 525\ N Z Z (bi; = N/4)
Gy, Gi, Gy, ..., G, Each partition is a grid of @ elements L
generated by dividing th¥ andY axis into 2" equiprobable It should be noted that while the Fraser-Swinney algo-

elements, that is the boundaries on tieand Y axis are  rithm uses ax? criterion to control subdivisions of th¥Y
positioned so thaPy=P,=1/2" for each element of the plane locally, it does not, in contrast with the algorithm of
partition. Gy is the entireXY plane.R(K,,) denotes an ele- the previous section, provide a global statistical assessment
ment of the partitiorG,,. of an1(X,Y) calculation that includes the probability of the
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4 T T - superposition of the results obtained wheg,.=65 536 for
35 both algorithms. The values of lag corresponding to the first
% minimum of the mutual information versus lag function ob-
Dl tained with the two algorithms are either equal or differ by 1.
225 The average difference in the value of mutual information is
g less than 4%.
€ 2 We now have two candidate procedures for calculating
Sis 1(X,Y), the Fraser-Swinney algorithm and the globally adap-
S tive partition algorithm presented in Sec. IV. A procedure for
! comparing the two methods is constructed in the next sec-
0.5 L . . tion.
0 50 100 150 200
Lag
FIG. 9. Mutual information as a function of lag using the VI. COMPARING ALGORITHMS
Rossler data of Fig. 3. Mutual information was calculated using the ) ) )
Fraser-Swinney algorithm whexi, =65 536. Viewed at lag=18, the In the previous sections, two procedures for computing
curves from thex, y, andz variables have the top-down order of Mutual information were presented. They are compared in
X—2-Y. this section. Two properties, accuracy and speed, are exam-

ined. A comparison of accuracy requires example cases

null hypothesis of statistical independence. The code implewhere the true value of mutual information is known to a
menting their algorithm distributed by Fraser and Swinneyhigh accuracy. This can be provided by jointly Gaussian data
departs from the partition termination criterion outlined in Sets. Two data sets are said to be jointly Gaussian if their
the text of their paper. In their code, the probe for structure ig0int probability density function centered @ty ,m,) has the
conducted at only one sublevel and the partitioning procestorm

is terminated ify3< 1.547. Fraser’s restatement of the algo-

rithm in binary representation and the generalization to em- 1 p{ -1 x—m, )2
bedded data are summarized in Appendix B. Pyy (X,y) = 128X 5 [( )
Results obtained when our implementation of the Fraser- 2moyay(1-17) 2(1-r9) Ox

Swinney algorithm with a single-level partition termination x-m\[y-m, y-m, 2
criterion of)(§< 1.547 was applied to the Réssler data of Fig. - o e + 7 .
y

3 are shown in Fig. 9. In our implementation, as in the case
of the Fraser-Swinney code, the length of data ¥etsxdY
must be a power of 2. Visual comparison of the results obm, ando, are the mean and standard deviation of time series
tained with the Fraser-Swinney algorithm aNg,,=65536  {X}. m, and oy are defined analogously f¢¥}, andr is the
(Fig. 9 with the results obtained with the algorithm of Sec. cross-correlation coefficient betwedX} and {Y}. For the

IV and Nga:=100 000 suggests that similar results were ob-case of jointly Gaussian data sets, the mutual information is
tained. This point is emphasized in Fig. 10 which shows thaanalytically related to the correlation coefficient by

-~

w

Mutual Information (bits)
- N

(=]

o~

FIG. 10. Direct comparison of results ob-
tained with the algorithm of Sec. IV and the
Fraser-Swinney algorithm using Rdéssler data of
Fig. 3.Np=65 536. For those values of lag where
the results of the two algorithms differ, the results
of the algorithm of Sec. IV are below the results
obtained with the Fraser-Swinney algorithm.

w

Mutual Information (bits)
- N

o

-~

w

-

Mutual Information (bits)
N

o

1 1 1
[+} 20 40 60 80 100 120 140 160 180 200
Lag

066208-8



STATISTICAL VALIDATION OF MUTUAL ... PHYSICAL REVIEW E 71, 066208(2005

25 TABLE II. Average normalized error in the estimation of mutual
information.

,-2

":' Algorithm Error

§ Algorithm of Sec. IVExy(i,j)=5 1.91x10°3

£ Algorithm of Sec. IVEyy(i,j)=10 1.55x< 1073

,‘—g Algorithm of Sec. IVExy(i,j)=15 3.15x10°%®

g Fraser-Swinney algorithr}q§< 1.547 248107t
Fraser-Swinney algorithngr§< 5.000 0.9% 1073

-1 -08 06 -04 -02 0 0.2 04 0.6 0.8 1

' at least 95%. This convention accounts for the transition to

FIG. 11. Comparing the Fraser-Swinney algorithm, the algo-l(X,Y)=0 in the vicinity of r=0 for I(X,Y) functions ob-
rithm of Sec. 1V, and -0.5 l{L—r?) for jointly distributed Gaussian tained with this algorithm. Viewed at=0.2 the top-down
data. Ninety-nine values of correlationuniformly distributed on  ordering of thel(X,Y) vs r functions is (i) the Fraser-
(=1,1) were usedNp=8192. For each value of 100{X}, {Y} data  Swinney algorithm withy3 < 1.547 (i) the algorithm of Sec.
set pairs were generated. The algorithm’s average value of mutugl, with Exy(i,j)=5, (iii) the algorithm of Sec. IV with
information is displayed. Viewed at0.2 the top-down ordering of £ (i 1y=>10, (iv) the algorithm of Sec. IV withExy (i, j)

thzi(lxs‘z)? VST t:}uncflon_sﬂ:s(l) ]Ehse Fr?\s/er-_tsr\évmn_ey a;lgson;_r_]mtk\]mth =15, (v) the Fraser-Swinney algorithm witté < 5.000,(vi)
X3=1.547,(ii) the algorithm of Sec. IV wittExy (i, ) =5, (iil) the the analytical solution —0.5 (i —r?). The greatest numerical
algorithm of Sec. IV withEyy(i,j)=10, (iv) the algorithm of Sec. | f1X.Y) is obtai .d ith .h £ Swi |

IV with Exy(i,j)=15, (v) the Fraser-Swinney algorithm Wit}ag V_a ue O_ (X,Y) is _O_ t_a'ne _W't_ the ’ raser- W'nn_ey aigo-
<5.000,(vi) the analytical solution —0.5 {4 —r2). rithm with a subdivision criterion of“<1.547. This pro-
duces the greatest valuelgX, Y) because the comparatively
tolerant criterion of 27% introduces a numerical indication of

— _ _r2
1(X,Y)=-0.5In1-r%). small scale structure in the da&@nd hence a greater value of

A derivation of the relationship is given in Appendix A. The Mutual information that may not be present. With the more
construction of a procedure for generating jointly Gaussiarflémanding criterion ofy”<5.000, a subdivision is intro-

data sets with a specified correlation coefficient is also preduced only if there is at least an 80% probability of nonuni-
sented in that appendix. form substructure. With this criterion there is less divergence

Mutual information estimates obtained with the algorithm Pétween the algorithm-estimated value of mutual informa-

of Sec. IV and with the Fraser-Swinney algorithm are com-tion and the analytically computed value of -0.6lRr?).
pared against —0.5 (i —r2) for the case of jointly distributed Following Hamilton [24], the following error measure

Gaussian data in Fig. 11. Ninety-nine values péiniformly ~ Was calculated:

distributed on(-1,1) were used in these calculations. For 99

each value of, 100 jointly distributed X}, {Y} data set pairs > (1(X,Y)anaivtical_ | (x )algorithm)2
of length 8192 were generated. The average value of mutual _i=

) . . . : error = ,
information for these pairs was determined using both algo- 29 .

rithms. Multiple variants of each algorithm were used. The > (1(X,Y)analytica)2
irregularl(X,Y) vsr function seen in Fig. 11 was produced i=1

using the Fraser-Swinney algorithm when the subpartitioning,nere I(X,Y)2natical denotes the value obtained using
process was terminated with the criterigh<<1.547. With -0.5In(1-r?). The results are shown in Table II. It is seen

this criterion, an element of the partition is subdivided if thethat the magpnitude of the error is low with both algorithms.
prqbe_lbility of.no.nun.iform substrugture i.S greater than 2.7%' In addition to providing an explicit assessment of the
This is the criterion implemented in their code. Calculationsy,,hapijity of the null hypothesis of statistical independence,
were also performed using;<5.000. This criterion results o algorithm of Sec. IV offers an additional advantage over
in the subdivision of an element of the partition only if the o Fraser-Swinney algorithm. It is much faster. Comparison
probability of nonuniform substructure is at least 802%' INot computation times with data sets of different lengths is
this case, the results were much closer to —0541).  given in Table IlI. Both programs were run inaTLAB 6.5.0
Three variants of the algorithm constructed in Sec. IV WEr§R13) on a Pentium 4 processor running at 2.53 GHz. The
used. In the first instance, the number of elements in the,mpytation times of the algorithm of Sec. IV are typically
partition were chosen so th&y(i,j)=5 for all elements. 5, the order of 0.5% of the times required by the Fraser-
Recall thatExy (i, j) is the expected occupancy in partition syinney algorithm. In addition to being more accurate than
element(i,j). Calculations also were performed with the the y2<1.547 criterion, thex3<5.000 algorithm is faster
Sec. IV algorithm with Exy(i,j)=10 and with Exy(i,j)  because it introduces fewer subdivisions.

=15. In the case of the Sec. IV algorithm, the value An approximate understanding of the sensitivity of the
I(X,Y)=0 is returned whenever the null hypothesis of statistwo algorithms to data set size can be obtained by examining
tical independence is not rejected with a confidence level ofhe results presented in Fig. 12. That diagram shows the mu-
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TABLE lll. Comparative computation times for different algorithms.

Ngata Time algorithm of Sec. IMse9 Time Fraser-Swinney aIgorithm§=l.547(sec) Time Fraser-Swinney algorithm§:5.00(seo

4096 1.3 266.2 185.2
8192 2.7 544.0 392.4
16384 5.0 1169.5 851.0
32768 9.3 25495 1898.5
65536 241 5940.5 4533.5

tual information versus lag functions obtained from a singleproviding a global test of the statistical independence null
data set generated by the Rossler equatisnariable data ~ hypothesis. The Fraser-Swinney algorithm useg test lo-
As already seen in Fig. 9, the results obtained wihgn  cally to implement the partitioning protocol. It does not,
=65536 are almost identical. More substantive differencefiowever, return an assessment of the statistical independence
are observed, however, when smaller data sets are useaf. X andY. Second, while the Fraser-Swinney algorithm is
When Np is 4096 and 8192, the algorithm of Sec. IV pro- more accurate with data sets whég=8192(Table i), the
duces output that is slightly less than, but largely parallel toyesults of Fig. 12 suggest that the Fraser-Swinney algorithm
the results obtained whe, =65 536. For this algorithm, the requires large data sets even when #§&:5.000 criterion is
value of lag giving the first minimum of mutual information used. When smaller data sets are used the Fraser-Swinney
was the same for all values df; tested. In contrast, when algorithm presents structures that disappear when more data
Np=4096 and 8192, the Fraser-Swinney algorithm producebecomes available. If the object of the calculation is to use
mutual information versus lag functions that present struct(X;,X+ag) functions to find the appropriate lag for embed-
tures that are lost when more data are incorporated into theéing, then these local minima could give misleading results.
computations. In some instances, these structures can alt€hird, the algorithm of Sec. IV requires about 0.5% of the
the identification of the lag giving the minimum value of calculation time required by the Fraser-Swinney algorithm.
mutual information. Limitations of this study should be noted. Additional al-
gorithms could be considered. Following Silvermgzb,
VII. DISCUSSION Moon et al. [26] have used kernel density estimators to cal-
culate probability densities. They argue that the resulting al-
The Fraser-Swinney algorithm with th(§<5.000 crite-  gorithm outperforms the Fraser-Swinney algorithm. Mabn
rion outperforms that algorithm whe@< 1.547 is used both al. also suggest that their algorithm can be improved by us-
in terms of accuracyTable Il) and speedTable Ill). Acom-  ing K-d trees to partition the data. Caution must be exercised
parison of the Fraser-Swinney algorithm with trﬁ when evaluating this suggestion. Our exploratory calcula-
<5.000 criterion against the algorithm of Sec. IV leads totions have shown tha-d tree partitions can be very sensi-
the following conclusions. First, the algorithm of Sec. IV hastive to initial conditions. This sensitivity is addressed by Bra-
a significant advantage over the Fraser-Swinney algorithm inlley and Fayyad[27] who published a procedure for

4 T T T T T T T T T

FIG. 12. Mutual information versus lag for
data sets of different sizes. Mutual information
versus lag was computed using both algorithms
for Np=4096, 8192, 16 384, 32 768, and 65 536.
The data were generated by the Rd&ssler equa-
tions, andx-variable output was used in the cal-
culations. Functions calculated witky=65 536
are at the top of each set of curves. Functions
calculated withNp=4096 are at the bottom of
each set of curves. The top set of curves was
calculated using the algorithm of Sec. IV. The
middle set of results was calculated using the
Fraser-Swinney algorithm with?=1.547. The
results in the lowest panel were calculated with
the Fraser-Swinney algorithm and=5.000.

Mutual Information (bits)

1
0 20 40 60 80 100 120 140 160 180 200

Mutual Information (bits)

Mutual Information (bits)

0 1 1 Il 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

Lag
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computing initial conditions based on a procedure for esti- Yet another approach to calculating mutual information
mating the modes of a distribution. has been published by Kilminstet al.[32] who have shown
Instead of partitioning phase space as is done in thé¢éhat the Radon transform can be used to estimate joint prob-
algorithms discussed above, Pawelzik and Sch{ig&mused ability density functions which can then be used to estimate
the first order correlation integral to calculate probability mutual information. They argue that, in contrast with stan-
densities and entropies. These entropies are then used dard methods, this procedure preserves fractal structure.
calculate mutual information. We consider here appli-Since completing this manuscript, our attention has been di-
cation of the technique to embedded time series datagcted to a valuable paper by Kraskov, Stoégbauer, and Grass-
Xy = (X, Xictlags X 2lags - - Xkt (m-1)lag) and Y,  berger[33] on estimating mutual information. The Kilmin-
=(Yk. Yk+lag Yks2lags - - Yis(m-lagk=1, ..., N=m+1. Appli-  steretal, Moonet al, and Kraskowet al. algorithms could
cation to scalar data is trivially obtained by taking the em-b& compared against the Fraser-Swinney algorithm and the
bedding dimension, m, to be one fdrandY, and thus di- ~ &lgorithm of Sec. IV in an expanded study.
mension 2 for the joint space. The density Xfin the
neighborhood ok, is approximated by the first order corre-

lation integral ACKNOWLEDGMENTS
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1
H(X,r) =~ N_E In pxk(r). APPENDIX A: JOINTLY GAUSSIAN DATA SETS AND THE
Vk=1 MUTUAL INFORMATION OF JOINTLY GAUSSIAN

In some implementations, finite sample corrections due to DATA SET PAIRS

Grassberg€f29] are included. The entropies of thedata as
well as the joint entropy are calculated similarly, and theseG
are used to obtain the mutual information from the relationG

I(X’Y).:H(X).+H(Y1_II-|([§(’)}{)' d the P lzik-Schuster al onstration showing that the mutual information of two jointly
Quian Quirogzet al. used the Pawelzik-SChuster al- o, ssian data sets with a cross-correlation coeffidieist

gorithm with the Grassberger corrections in a study of syn—_0.5|r(1_r2)_

chronization of rat electrocorticograniE CoG. They stud- A . . :
ied three multichannel ECoG records in a rat model of For simplicity of presentation we consider the special case

) . - ?tf data sets that have zero mean and equal variance. The
genetic absence epilepsy and compared activity between le

and right hemispheres. They concluded that except for mu;_)rocedure can be extended to the more general case. Let

N —(yl 1 1 1 2l —(v2 2 2 2 _
tual information their linear and nonlinear measures providetlj;(n}(igrlibﬁ’exé’ Wlt;(]’\g e?gdrriza}n_z;)r(]a )t(r21exg ’a.r-ﬁ)éN\)/ at;ieaj?ce}d:isss
qualitatively similar results. The authors felt that the small

number of data point$N=1000 was responsible for the further assumed that they are uncorrelated, that is, their

. ! . . . cross-correlation coefficiemtis equal to zero. Given the as-
failure of mutual information to provide robust estimates of . . ST L
. . ; S sumption of zero correlation, their joint probability distribu-
interhemispheric synchronization. These data were re:

analyzed by Duckrow and Albanf81] using a modified ::ggsls the product of their individual probability distribu-
Fraser-Swinney algorithm. The data were embedded and in-~ ™’

terleaved as described in Appendix B and the resulting bi-

We construct here a procedure for generating jointly
aussian data set§r'} and {Y?} from two independent
aussian data sefX'} and{x?}. This is followed by a dem-

nary representations were used as inputs in the Fraser- 1o 1 12 1 2
Swinney algorithm. Using embedding dimensions from 1 to Pxaxa(X",X) = quozeXp{_ [+ (x)?)120%}
10 and Lags from 1 to 30, the results consistently showed the .,

ranking that Quian Quiroget al. found using other measures _ 1 s

of synchronization. Results obtained by Duckrow and Al- = 277|2X|1/zex X ” X2,

bano using these data and a uniform partition algorithm
showed a behavior similar to that found by Quian Quiroga
when they used the Pawelzik-Schuster algorithm. whereX, is the (X', X?) covariance matrix,
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S (02 0 ) Y=Yy
» 0 o2/ " Y=Yy 23|12
1(YLY?) = In I~ 5 dy*dy?.
1l L 27|Sy V2| g vh20 g-(yH) 20
Two data sets {Y}=(yi,y;,V3....yy) and {Y?%
=(y3,Y5,Y3,...y5) With zero means, equal varianeé, and 2702  \2mwd?

cross-correlatiom are jointly Gaussian if their joint probabil-

H H H 1/2
ity density function is Given the previously stated expression fa|*?, and the

relationship betweerx and y, we can transform this into
integrals overx! andx?:

1
2y — Tl
Pylyz(yl,y )= 277|Ey|llzeXp{ yTEy y/2}. |(Y1,Y2)
T T
3, is the(Y*,Y?) covariance matrix, _[l & Xlzazm gx"2r drdds®
27o? e Oy 207 _p2y112
-1
1 1 1 -r
> :&(r 1)(1—r2)1’2, > = m(_r . ) which can be simplified to
v v eXTX/2(72 1
" (YL Y?) =ﬂ o2 ﬁ[rz(xl)z—rz(x2)2—2r\ﬂ1— Pxx?]
> =0%(1 -2, (A1) ”
Y

-Iny1- rz}dxldxz.
Matrix A is a two-dimensional linear transformation relating
{X'} and {X?}, independent Gaussian random variables, tQonsider the integral

{Y%} and{Y?}, jointly distributed Gaussian variables, i
—X ' X/2¢ 1
ﬂl 627702 {ﬁ[rz()&)z_ r2(x2)2]}dx1dx2.

1 1
5 AV
2 =A )
! J The two terms are of equal magnitude and opposite sign, and

Let A be given by théa double integral is therefore equal to zero. Similarly con-
sider
ab -XTx/202
= : 1 —
A (c d) ﬂezmz {ﬁ(_ 2r\/1—r2x1x2)}dx1dx2.

Using this representation fak, the relationshipx=Ay, and  g5ch integral is of an odd function over the range—o

- _1 - .
the expression foE," above makes it possible to solve for 5 s therefore equal to zero. The integral for mutual infor-
¢, andd in terms ofa andr. There are an infinity oA's that 1 ,4ti0n simplifies to

depend on the choice & We use here the simplest case,

a=1, e X207
(YL Y?) = —ﬂ {InV1 - r?}dxtdx®.
1 0 27o?
1 0 .
A= r -1 |, Al= ( ﬁ) ) Using

f m e 7207 = 2mY2s

In the next step, we need to establish the relationship cited -

in the text between mutual informatidiiY?,Y?) andr, the .

cross-correlation coefficient. In this derivation, we use theglves

property that{Y'} and{Y?} are jointly distributed, have cor- Los — )
relationr, and are related to independent Gaussian data sets I(YSY) ==InV1-ro=- 5'”(1 —r9).
{X%} and{X?} by linear transformatior. The derivation be-
gins with the integral representation for mutual information
expressed in terms of the joint and individual probability

density functions. The integrals are taken from to +o, APPENDIX B: BINARY REPRESENTATION OF - XY

PARTITIONING AND GENERALIZATION
TO EMBEDDED DATA

roa(VL V2
PYY(y’y))}dyldyz.

1 2\ 1.,,2 _—
1(Y,Y?) = ﬂ Pyiy2(y™y )ln{ Py1(yD)Pyaly?

Section V discussed the local adaptive partitioning used
by Fraser and Swinney to calculate mutual information. The
By construction,Y* and Y? are jointly Gaussian with equal space being partitioned is that of the joint distributionXof
variances.Y! and Y? are Gaussian distributed, giving the ={x1,Xp,...xy} and Y={y1,y»,...yn}, @ subset of thexyY
following expression for mutual information: plane which may be considered a two-dimensional embed-
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(xR,yd) O z2=(010001110111

A crucial advantage of this representation derives from
the observation that the successive bit pairs provide a tree
representation for the location ofx{,yf) in the two-
dimensional embedding space. To see this, label the axes of a
two-dimensional embedding space wndy and consider

261 251 the region Gsx, y<2°-1. If this region is subdivided into
01 11 0101 o111 four quadrants as in Fig. 18, then the bottom-left quadrant
contains all those vectors with six-lyit whose most signifi-

cant bits are 0 and witly’'s whose most significant bits are

y 2° . .
00 10 0100 0110 also zero, the bottom-right quadrant contains all the'se
s whose most significant bits are 1 and thg&ewhose most
0 ; - 0 p 2 significant bits are 0, etc. The location of any interleaved
2 2° -1 2

point in this subdivision is thus labeled by its first two ele-
(’;) ();) ments; the(xZ,yR) in our example is in quadrant 01. If this
quadrant is again subdivided into four, the next two bitszbf

FIG. 13. (a) Partition of 0<x,y=25-1 into four quadrantsb) specify its location in the new subdivisigfig. 13b)], and

Partition of quadrant Ofupper lef} into four subquadrants. SO on. . _ _ .
The technique of interleaving may also be used to imple-

ment time-delay embedding. Consider thedimensional

ding space whose elements &rgy;),i=1,2,...N. The fol- embedding o with a specified lag

lowing steps are used to implement the procedure:
1. Let the number of elements of bod and Y be N X= (X Xcrlag X+ 2lag -+ Xk+(m-1lag)

=2" (the binary logic of the algorithm requiréé=2"). ) ] ) ) )
2. Rank order bottX andY with no repeated elements so Using the notation of Eq(1), the m-dimensional embedding

that they both map to permutations of the integers Q,.], VectorX, may be represented as

2"-1. To avoid repeated elements, one may assign higher — (4101 . .n-1

ranks to numbers appearing earlier in the series. Call theseXkH U= (@ Biciag " Brle-Diag)

rank-ordered listdR={X? x5, .. x} and YR={yR y5,...yR}. X (8} “ariag" " Arik-1iag) " (BR8RtIag” " Bks(m-Diag)

XR and YR are equiprobable. (B2)
3. Transform the elements O to binary. Since the 0

sx,'fszn—l, these binary representations have at most a number that uniquely represeiXg. A similar embedding

bits, i.e.,xg=ag 'ag 2...ap. Here,a] ' is the most significant and interleaving of gives

bit of x, a2 the second most significant, etc. Perform the

same transformation on the elements W to get y{ Y = (Yo Yieiag Yir2 Lg: -+ Yicr(m-Diag)
=bg b b, and
4. Interleave the bits ofy andyg to get N .
Yy — v = (B Briag™ * Pir(k-1)ia
R n-1,.n-1.n-2.n-1 01,0
= . B1 2n- -
& (ak by 2y Dy akbk) (B1) X (bE 2bE+I2ag' a bE+(2k—1)la T (b(lzb(k)ﬂag o bg+(m—1)lag)

The two left-most elements af are the most significant bits The interleaved set$y,} and{v,}, each consists of"2hum-

of xg andyg, respectively, the next two are the next mostbers, each number specified hy< m bits. To calculate the
significant bits, etc. For example, suppcisxé,yf)=(5, 47). mutual information ofX andY, {u} and{v,} are converted
Then, using the binary representations,089101 and 47 to decimal and used as inputs in either the Fraser-Swinney

=101111, theinterleaved representation 6fF,yR) is algorithm or the algorithm of Sec. IV.
[1] T. M. Cover and J. A. Thomasklements of Information (1986.
Theory(Wiley, New York, 199). [5] C. J. Cellucci, A. M. Albano, and P. E. Rapp, Phys. Re\6E
[2] N. J. I Mars and F. H. Lopes da Silva, Methods of Analysis 066210(2003.
of Brain Electrical and Magnetic Signals. EEG HandboBle- [6] H. D. I. Abarbanel, Analysis of Observed Chaotic Data
vised Series, edited by A. S. Gevins and A. Rém¢&idevier (Springer-Verlag, New York, 1996
Science Publishers, Amsterdam, 188%ol. |, pp. 297-307. [7] C. W. J. Granger, Econometric87, 424(1969.
[3] P. E. Rapp, A. M. Albano, T. I. Schmah, and L. A. Farwell, [8] M. J. Kaminski, M. Ding, W. A. Truccolo, and S. L. Bressler,
Phys. Rev. E47, 2289(1993. Biol. Cybern. 85, 145 (2002.

[4] A. M. Fraser and H. L. Swinney, Phys. Rev. 83, 1134 [9] J. Xu, Z.-R. Liu, R. Liu, and Q.-F. Yang, Physica 06, 363

066208-13



CELLUCCI, ALBANO, AND RAPP PHYSICAL REVIEW E71, 066208(2005

(1997). Statistical Methods and Data Analyg/adsworth, New York,
[10] T. Inouye, K. Shinosaki, and A. Yagasaki, Electroencephalogr. 1998.
Clin. Neurophysiol. 55, 290(1983. [23] A. M. Fraser, IEEE Trans. Inf. Theor@5, 245 (1989.
[11] T. Inouye, K. Shinosaki, A. lyama, and Y. Matsumoto, Elec- [24] 3. D. Hamilton, Time Series AnalysigPrinceton University
troencephalogr. Clin. NeurophysioB6, 224 (1993. Press, Princeton, NJ, 1964
[12] F. H. Lopes da Silva, J. P. Pijn, and P. Boeijinga, Brain Topogr

[25] B. W. Silverman,Density Estimation for Statistics and Data

[13] F. Chen, J. Xu, F. Gu, X. Yu, X. Meng, and Z. Qiu, Biol. ___ Analysis(Chapman and Hall, New York, 1986
Cybern 83 355’(2000 ’ ' ' ' [26] Y.-L. Moon, R. Rajagopalan, and U. Lall, Phys. Rev.%2,

[14] T. Schreiber, Phys. Rev. Let85, 461(2000. 2318(1999. _ _ _
[15] J. B. Bendat and A. G. Piersdleasurement and Analysis of [27] P S. Bradley and U. M. Fayyad, iRroceedings of the Fif-

2,9(1989.

Random DataJohn Wiley, New York, 196§ p. 284. teenth Conference on Machine Learnireglited by |. Brasko
[16] J. H. Cocatre-Zilgien and F. Delcomyn, J. Neurosci. Methods ~ and S. DzeroskiMorgan Kaufman, New York, 1998

41,19 (1992. [28] K. Pawelzik and H. G. Schuster, Phys. Rev3A, 481(1987.
[17] F. Mosteller and J. W. Tukeypata Analysis and Regression [29] P. Grassberger, Phys. Lett. 228 369 (1988.

(Addison-Wesley, Reading, MA, 197,7p. 49. [30] R. Quian Quiroga, A. Kraskov, T. Kreuz, and P. Grassberger,
[18] Y. Rissanen, Stochastic Complexity in Statistical Inquiry Phys. Rev. E65, 041903(2002.

(World Scientific, Singapore, 1992p. 76. [31] R. B. Duckrow and A. M. Albano, Phys. Rev. E7, 063901
[19] J. P. Eckmann and D. Ruelle, Rev. Mod. Ph§g, 617(1985. (2003.
[20] T. Sauer, J. A. Yorke and M. Casdagli, J. Stat. Ph/5.579 [32] D. Kilminster, D. Allingham, and A. Mees, Ann. Inst. Stat.

(1991). Math. 54, 224 (2002).
[21] W. G. Cochran, Biometricd 0, 417 (1954). [33] A. Kraskov, H. Stogbauer, and P. Grassberger, Phys. Rev. E
[22] L. Oftt, M. T. Longnecker, and R. L. Ot&n Introduction to 69, 066138(2004).

066208-14



